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We give a criterion to compare the physical content of different mathematical 
structures derived from a preparation-question structure. Then this criterion is 
used in order to compare the physical content of the (Jauch-Piron's) property 
lattice with the physical content of the poset of testable properties. We prove that 
for complete preparation-question structures these two structures carry the same 
physical content; moreover the set of testable properties has the algebraic struc- 
ture of the Brouwer-Zadeh lattice. For more general preparation-question struc- 
tures the physical content of the poset of testable property can be larger than 
that of the property lattice. Physically relevant examples of the possible cases are 
given. 

1. INTRODUCTION 

The Jauch-Piron approach to quantum mechanics (Jauch, 1983; Piron, 
1976) uses primitive concepts such as question and truth of  questions to get 
the property lattice ~ as a derived mathematical structure. Some axioms, 
explicitly or implicitly stated in the Jauch-Piron theory, appear as statements 
of obvious validity, on the basis of the physical interpretation of primitive 
concepts. We call these axioms basic specific axioms of the theory. 

A preparation-question structure, denoted by (5:, 2 ; / ,  rr, ~; T>, accord- 
ing to Cattaneo et al. (1988), is a mathematical structure whose terms formal- 
ize all primitive concepts, and only these, of the Jauch-Piron theory, and 
which is equipped with the basic specific axioms. Other axioms may be added 
so as to obtain more specific theories. We call these latter specific peculiar 
axioms. For instance, quantum mechanics with superselection rules may be 
recovered from a preparation-question structure requiring Piron's axioms 

'Dipartimento di Scienze dell'Informazione, Universit/t di Milano, Milan, Italy. 
2Dipartimento di Matematica, Universit~ della Calabria, Rende, Italy. 

1873 

0020-7748/92/1000-1873506.50/0 �9 1992 Plenum Publishing Corporation 



1874 Cattaneo and Nistic6 

C, P, A or Aerts' (1981a, 1982) axioms 1-5; indeed, if one of these sets of 
axioms holds, then the property lattice A a turns out to be isomorphic to the 
direct union of  a suitable family of lattices (J/(~cgi)) [here ~'(~r denotes 
the lattice of closed subspaces of a generalized Hilbert space aft]. Thus, the 
property lattice A a is a privileged mathematical structure derived from a 
preparation-question structure. However, several mathematical structures, 
different from the property lattice, can be derived from a preparation-ques- 
tion structure (without specific peculiar axioms). In particular, in Section 4 
we define the poset L of testable properties and a structure L(Z, zig-) which 
turns out to be a BZ-lattice, a category of mathematical structures intro- 
duced in Cattaneo and Nistic6 (1989a). 

What is the physical relevance of these new structures? Are they more 
or less relevant than the property lattice Ae? In this paper we will try to 
answer these questions and therefore deal with the problem of comparing or 
measuring the physical content of mathematical structures derived from a 
preparation-question structure. In so doing we assume that the whole phys- 
ical content of  a theory based on preparation-question structures is carried 
by the preparation-question structure ( Se, 2; I, re, ~; T )  itself, because all 
possible physical facts are collected in it. Our point of view is that a purely 
mathematical manipulation Cannot create physical information, so that every 
structure derived from a preparation-question structure cannot carry a larger 
physical content. Thus, in general, in the passage from the preparation- 
question structure to a derived structure we expect a certain loss of physical 
information to occur. However, tog ive  a concrete form to our ideas, in 
Section 4 we give a precise criterion (Definition 4.1) to compare the physical 
content of two mathematical structures. By using this criterion and the 
mathematical properties of a BZ-lattice we can prove that the physical con- 
tent of the property lattice 5e coincides with that of the poset L of testable 
properties if a specific peculiar axiom, named the completeness axiom, holds. 
In this case L turns out to be a BZ-lattice. Generally the physical content 
carried by L is larger than the physical content carried by the property 
lattice ~ .  

In Section 2 we introduce the notion of  preparation-question structure 
(pqs). In Section 3 we outline Jauch and Piron's and Aerts' theories; more- 
over, we provide a mathematical model of a preparation-question structure 
which is based on a Hilbert space, and embodies quantum mechanics. In 
Section 4 we derive the poset L of testable properties and the BZ-lattice 
L(E,-g-) from a preparation-question structure. We show that, without 
peculiar specific axioms, the physical content carried by L is larger than that 
carried by .L~'. In Section 4.2 we introduce the completeness axiom. We show 
that if this axiom holds, L turns out to be a BZ-lattice isomorphic to L(Y~, -~), 
and this enables us to state that s162 and L carry the same physical content. 
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However, we show in Section 4.3 that the completeness axiom does not 
hold in a pqs which describes two separated entities according to Aerts' 
(1981a, 1982) theory. We conclude that we cannot attribute the whole phys- 
ical content of the theory to the property lattice A ~ in general theories based 
on preparation-question structures. 

2. GENERAL THEORY 

The Jauch-Piron (JP) approach to quantum physics (Jauch, 1983; 
Piton, 1976) starts by introducing the primitive concepts of the theory, i.e., 
those terms having a direct physical interpretation. In the following items 
these concepts are presented and their physical interpretation is given. 3 

I. Preparation procedures. A preparation procedure of an entity S is any 
reproducible way of obtaining samples of the entity. We denote the set of 
preparation procedures of the entity S by 5 ~ and single preparation proce- 
dures by letters x, y, z, etc. Since a preparation procedure xeSP is reproduc- 
ible, it can also be used to obtain ensembles of arbitrary size of single samples 
prepared according to x. 

2. Questions. By a question of an entity S we mean any experimental 
observation performable on any single sample of the entity and such that, 
each time it is carried out, the outcome is always interpretable either as 
"yes" or as "no." We denote questions by Greek letters a, fl, y, etc., and 
by .~ the set of the questions of the entity. 

3. Truth and falsehood of  a question. A question a E.~ is said to be true 
(resp. false) in xE5 ~ if any performance of the question a with an arbitrary 
sample of the entity prepared according to x yields the outcome "yes" (resp., 
"no") with certainty. This concept is properly formalized by means of a 
relation T~_ 5 ~ x .~ (resp., F _  5P x .~). Thus, if the question a is true (resp., 
false) in xE9 ~, we write T(x, a) [resp., F(x, a)]. 

Sometimes the following concept also appears in the JP approach. 

(MI) Occurrence of  a question. We say that a question a occurs (resp., 
does not occur) if the performance of a yields the outcome 
"yes" (resp., "no"). 

However, it must be noticed that the concept (M 1) cannot be formalized 
in the now proposed JP framework; it must be regarded as a metatheoretical 
concept rather than a primitive one of the theory. 

Definition 2.1. Let a be a question of an entity S; subsets 

APt(a) = {xeAP[T(x, a)} and 5PF(a) = {xeSPlF(x, a)} 

3In our presentation we explicitly formalize the concept of preparation procedure, which the 
JP approach uses without formalizing it. 
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will be called the certainly true and the certainly false domain of the question 
a, respectively. 

The following statements are assumed as basic specific axioms of the 
theory. 

AI For every a e.~, 5Pr(a) n 5Pp(a) = 0 .  
A2 A question Ie.~ exists such that 5er(l)=SP. This trivial question 

is called the certain question. 
A3 Given an arbitrary family of questions {ai} -~.~, a question giaie.~ 

exists and is called the product of all ai such that 

~ r ( Z , a i )  = ~ ~ r ( a i )  and ~F(z ia , )  = ~ ~ p ( a i )  
i i 

The product of two questions a and fl will be also denoted by 
a - f l  or aft. 

A4 A mapping 
~. ~_.,.~, a ~ - - ~ a  N 

exists such that (i) for every ae.~, 5%(aD=SPp(a) ,  ~p(a~)  = 
5%(a),  and a ~~= a;  and (ii) for every family {ai} ~-~, we have 

(z iai)-  = zia7 

The question a ~ is call the inverse of a. 

Definition 2.2. We denote the question I~ by O, and call it the absurd 
question. 

Question I is nothing else but a question testing the presence of the 
entity S; therefore, it is always true, so its inverse 0 is always false. The 
product question z~ai is performed by carrying out one of the questions a~, 
which is chosen in an arbitrary way, at random or not, and by attributing 
the outcome so obtained to z ; a ,  Given a question a, its inverse a ~ is the 
question performed by carrying out a and attributing to a~ the outcome 
"no" if "yes" is obtained for a, and "yes" if "no" is obtained for a. 

We call preparation-question structure (pqs) any pair (~ ,  .~) endowed 
with a relation T, a unary operation -, and an infinitary operation z on .~ 
such that statements A1-A4 hold; we denote a pqs by 

<5:, .~; I, z, ~; T> 

3. THE JAUCH-PIRON AND AERTS THEORIES 

In the JP approach to quantum physics, a pqs <5~, .~; I, re, - ;  T> may 
be associated to every entity S. Then, JP theory proceeds by defining the 
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main derived structure, the property lattice .Y. A set of specific peculiar 
axioms, namely axioms C, P, and A in Piton (1976), are added. By using 
these axioms Piron proves that an irreducible property lattice A", whose 
dimension is at least 4, is isomorphic to the lattice of closed subspaces of a 
generalized Hilbert space oW. Thus, JP theory provides a conceptual and 
axiomatic foundation of customary quantum mechanics. 

However, physical theories other than JP's can be formulated by choos- 
ing specific peculiar axioms which are different from C, P, A. As one 
example, we quote Aerts' theory. These different theories have a common 
feature: the physical interpretation of the whole formalism is possible only 
by using rules given in items 1-3 of Section 2; i.e., such an interpretation is 
based on the physical concepts carried by the underlying pqs. 

In Section 3.1 new notions, derived from a pqs, are introduced and the 
formalism is developed without introducing further axioms besides A1-A4 
which characterize every pqs. In Sections 3.2 and 3.3 we outline the JP and 
Aerts theories, respectively. In Section 3.4 we exhibit the Hilbertian model 
of pqs. 

3.1. The pqs Formalism 

Given a pqs ( ~ ,  .~; I, n, ~; T) ,  following Piron (1976), we define a 
quasiorder relation on .~ by 

a<f l  iff S~r(a)~_SCr(fl) (QO1) 

This quasiorder relation induces the following equivalence relation ~ on .~: 

a ~ f l  iff a < f l a n d f l < a  

iff 5f r ( a ) = ~ r ( f l )  (EQ1) 

An equivalence class [a] ~ generated by means of the equivalence relation 
(EQ1) is called a property. The set of all properties of an entity S, i.e., the 
quotient set .~/~, will be denoted by ~ .  The following theorem, proved by 
Piron (1976), allows us to say that ~ is the property lattice of the entity S. 

Theorem 3.1. The quotient set ~o_-.~/~ endowed with the order 
relation 

a<_b iff a<fl ,  Vaea and Vfleb (02) 

is a complete lattice where, denoting the l.u.b, and the g.l.b, by v and ^ ,  
respectively: 

(i) Aiai  = [ziai]~, with aieai 
(ii) Va~.va_=2=[I]~, Aa~.va--@=[O]~ 
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A property ac  La of an entity is said to be actualin the preparation procedure 
xc6e iff xcSer(a)  for one, and therefore all, a ca. 

According to Jauch and Piron (1969) and Aerts (1982), we identify 
a state of an entity with the set of its actual properties. If  the entity is 
prepared according to a preparation procedure xE6a, the set of all its actual 
properties is 

or(x) = {ac~lxcSer(a) ,  a ca} 

Then we denote by p(x) the property defined as 

p(x)= A ac.Z 
aE o(x) 

Note that for every xc  Se, p(x) c a(x) and p(x) ~ O. Since a c a(x) iff p(x) < a, 
we have that 

<r(x) = { ac.~'lp(x) <a} 

and p(x) is called the state of the entity prepared according to x. The set of 
all states of an entity S will be denoted by Z. 

Given at.~ and ac.~ a, we define the following subsets of Z: 

?ET(a  ) = {pcZl3xc6eT(a), p(x ) =p} 

= {p(x)c~lxCAeT(a)} 

X~(a) = {pc~13xc~r(a) ,  p(x) =p} 

= { p ( x )  

~ , T ( a )  = {pcZlpcZr(  a ), a ca} 

It is straightforward to prove the following proposition. 

Proposition 3.1. In a pqs <5 a, .~; I, ~r, ~; T> the following statements 
hold. 

(i) Let ac.~; then XCA'~T(a) iffp(x)CZr(a). 
(ii) Let a,/ffc.~; then a</~ iffZr(a)~_Zr(~). 

(iii) Let a,/~c.~; then a~/~ iff ZT(a)=ZT(O); therefore, ZT(a)= 
Zr(a) ,  aca. 

(iv) Let a, b c ~ ;  then a<b i f fZr(a)~Zr(b) .  
(v) Let a, bc ~ ; a = b iff Zr(a) = Zr(b ). 

We define the subset La(Z, .~) of ~ (Z)  as follows: 

La(Z, .~)= {Zr(a)lac.,q'} 

= {Zr( a )la c-~ } 
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By using Proposition 3.1, it is straightforward to prove that .Lf(Z, .~), 
equipped with the set-theoretic inclusion partial ordering is a lattice iso- 
morphic to the property lattice Ae via the mapping 

exh: .~-*A~ .~) ,  a~-*exh(a)=Zr(a) 

An irreflexive and symmetric binary relation, called a preclusivity relation, 
can be defined on Z as follows 4 

p#q iff 3ae.~ such that peZr(a) and qeZr(a) (P) 

We now collect some results which are related to any irreflexive and symmet- 
ric binary relation # on a nonempty set Z. Let A, B be two subsets of Z; 
we write A(#)B ifa#b, for every aeA and b~B. Given any subset A_cZ, 
we set 

A #= {peZIp#q, VqeA} 

and so if A(#)B, then B~_A ##. 

Proposition3.2. Let A, B be subsets of Z. Then, the following statements 
hold. 

(i) A__A ##. 
(ii) A~_B implies BU~A #. 

(iii) A c ~ A # = ~ .  

Furthermore, for every subset A of Z we have: 

(iv) A#=A ###. 

Moreover, for every family {A~} of subsets of Z we have: 

(V) (Ui Ai) #= N, A#. 
Proof. Straightforward. 

Definition 3.1. A subset A of Z will be said to be #-closed if A = A ##. 
We denote by s # )  the set of all #-closed subsets of E. 

The set Le(Z, # )  is never empty since the trivial subsets ~ and X are 
#-closed. The proofs of the following propositions arc straightforward. 

Proposition 3.3. The structure (~(Z,  # ) ,  _ ,  #) is an orthocomple- 
mented, complete lattice with respect to set-theoretic inclusion _ and to the 
orthocomplementation mapping 

#.  s ' #)v-+La(Z, # ) ,  A~--~A # 

4This relation was called "orthogonality" by Aerts (1982); we prefer the name "preclusivity" 
to avoid confusion with a possible orthogonality definable on .W. 
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Moreover, for every family {Ai} of # - d o s e d  subsets the greatest lower 
bound (g.l.b.) and the lowest upper bound (l.u.b.) are given by: 

(i) g.I .b.{A,}=N,A,.  (ii) 1.u.b.{A,}=V~A,=(U,A,) ##. 

Furthermore, the generalized de Morgan's laws hold: 

(iii) (V,  A,) # = N, Aft. 
(iv) (N, A,)* = V, A:. 

Finally, for any subset A of  Z. the subset A # #  is #-closed,  i.e., it is an 
element of  Aa(Z, # ) ,  containing A, and Such that 

A ##= 0 #): A 

thus, A ## is the #-closure of A. 

Proposition 3.4. For every a e.~: 

(i) Zr(a) ~_ZF(a) # and ZF(a) _cZr(a)  #. 
(ii) Zr(a)##(#)ZF(a) ##. 

The notion of primitive question, expressed by the following definition, 
is due to Aerts 0982). 

Definition 3.2. Let (5~, .~; I, ~, ~; T) be a pqs. A question ae.~ is said 
to be primitive if Zr(a)=ZF(a) # and ZF(a)= Zr(a) #. We shall denote the 
set of all primitive questions by #. 

Remark I. Our definition is nothing else but the translation, in terms 
of preclusivity relation, of the concept of primitive question is defined by 
Aerts (1982): "A question a is said to be primitive if (a is true in every state 
q orthogonal to all states in which a -  is true) and ( a -  is true in every state 
p orthogonal to all states in which a is true)." 

Proposition 3.5. Let (Se, .~;/, Jr, ~; T )  be a pqs. The following state- 
ments hold. 

(i) A question a is primitive iff a~ is primitive. 
(ii) If a and fl are primitive questions, then a ~ fl iff a - ,~  fl-. 

(iii) A question of the form 

]r ilTl i 

is primitive iff ai, ~ai~ and ai is primitive for all i t , /2, and i. 
(iv) If a is a primitive question, then Z r ( a )  and Ze(a)  are # - d o s e d  

subsets of  Z. 
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3.2. Jauch-Piron Theory 

Before introducing the specific peculiar axioms of  JP theory, we recall 
some definitions. 

Compatible complement. A property be& ~ is a compatible complement 
of a property a e ~  if a v b=~,  a ^ b=0 ,  and there exists aEa such that 
a-~b. We denote a compatible complement of a by a'. 

Cooering relation. Given two elements a, b~.o~, we say that a covers b, 
and we write a~b if for every cE.~, b<c<a implies c=b or c=a. 

Atom. An element p~La is an atom of the lattice ~ if p # 0  and p~0. 
The following axioms C, P, and A constitute the set of specific peculiar 

axioms of Piron's theory. 

Axiom C. Every property ae  L~ has at least one compatible complement. 

Axiom P. If a, b~L# and a<b, then the sublattice of L# generated by 
{a, b, a', b'} is a Boolean lattice. 

Axiom A. (AI) For every property a ~  there exists an atom p such 
that p < a; (A2) if p is an atom and b a property such that p a b = 0, then 
(p v b)<gb (covering law). 

It follows from axioms C and P that the compatible complement a' 
of every property a ~  is unique, so that <~ ,  < ,  '> turns out to be an 
orthocomplemented and weakly modular, i.e., orthomodular, atomic com- 
plete lattice in which the covering law holds. The following theorem is a very 
important result in JP theory. 

Theorem 3.2 (Piron). Every irreducible, orthomodular, atomic, and 
complete lattice of dimension at least 4 in which the covering law holds is 
isomorphic to the lattice ~(~tt~) of all closed subspaces of a generalized 
Hilbert space, or, equivalently, to the lattice o#(~ "~) of its orthogonal 
projections. 

3.3. Aerts' Theory 

Aerts' (1981a, 1982) approach to quantum physics differs from the JP 
theory only in a different choice of the specific peculiar axioms, Aerts intro- 
duces five axioms. 

Axiom 1. The set .~ of questions of an entity S is generated by the set 
of primitive questions of S by means of the unary operation ~ and the 

initary operation ~r. 

Axiom 2. For every state peY., there exists a question a~e.~ such that 
= { p } # .  
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A x i o m  3. Every state p e ~  is an atom of the property lattice L~'. 

Axioms 4 and 5 of Aerts' theory coincide with axiom P and axiom A2 
of the JP theory, respectively. 

Let us compare the two sets of axioms. We see that axiom 3 is equivalent 
to axiom Aj; thus, we get Aerts' theory from JP's by replacing axiom C with 
axioms 1 and 2. 

By using axioms 1-5, Aerts proves that the property lattice L# is, as in 
JP theory, an orthomodular, atomic complete lattice in which the covering 
law holds; therefore, Piron's Theorem 3.2 applies to Aerts' property lattice, 
too. 

3.4. Hiibert Space Model of  pqs 

Let ~ be a Hilbert space. We denote by ~ - ( ~ )  the set of all linear 
bounded self-adjoint operators a on ~e such that 0 < a < l ,  and by 
~(~fe) ~ - ( ~ )  the set of all (orthogonal) projection operators on a~'. 
Furthermore, we denote the composition of mappings by o, and for every 
a s ~'(~ff) we call E,  the resolution of the identity that belongs to a ; finally, 
for every trace class operator p we denote the trace of p by Tr[p]. 

Then, we now give the following definitions. 

1. We denote the subset of g ( ~ )  of all the projections over one-dimen- 
sional subspaces of A" by ~(~ff); an element xe  6 a ( ~ )  is called a Hilbertian 
preparation procedure. 

2. ~ ( ~ )  is called the set of Hilbertian questions. 
3. I denotes the identity operator on ~r ~. 
4. The sign - denotes the mapping 

~" a E ~ ( ~ ) ~ - - ~ a ~ = ( I - a ) e ~ ( ~ r  

5. The sign II denotes the mapping 

ri: @(~(~))  ~ ( ~ e ) ,  

a~-~ I-I a =  E,~({1})+ E~({0}) ~ a ~ ( ~ )  
~ E a  

(a being any family of operators of ~-(~e:)) with ~ ( ~ - ( ~ ) )  the power set 
of o~(~r ~) and 0 the usual meet in the lattice of all the (orthogonal) projec- 
tion operators on ~ ;  we explicitly note that generally I-I,~a a is not a 
projection, even when a_~g(~ ) .  
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6. T denotes the predicate "the trace is 1"; more precisely, for every 
x e ~ ( a ~ ) ,  a ~ ( a e ' )  

T(x, a) iff Tr[x o a] = 1 

(equivalently, Tr[x o Ea({1 } )] = 1). 

According to the above definitions, we state the following mathematical 
propositions (whose proofs are straightforward). 

P.I. Let x~Sg(~cg), ae~(~cg) ;  then, the properties Tr[x o a ] = l  and 
Tr[x o a ~] = 1 are mutually exclusive. 

P.2. Let xeSe(atg); then, Tr[x o I] = 1. 
P.3. Let xeSe(~cg), a ~ ( ~ ( ~ V g ) ) ;  then 

Tr[x o a] = 1 for every aea 

Tr[x o a] = 0 for every a ea 

aft Tr[x o (~ ~Q Ea({ 1 } ) + ~ (~Q, E~({0}))~)]= 0 

P.4. For every a~~ a ~ ~ = a ,  and for every ae~(~-(oW)), 

(Ho ~ a ) -  = a-).  
Thus, in the structure <Sr ~-(A~); H, - ;  T)  statements A1-A4 in 

Section 2 can be proved as theorems; i.e., this structure is a pqs. 

Remark 2. In the Hilbertian model of pqs, the property lattice ~(~'f~) 
is isomorphic to the lattice g(~fg) of all orthogonal projections of At'. Now, 
by the spectral theorem, every a e~(acg) can be expressed in terms of ortho- 
gonal projections, i.e., 

a = ~EdE:t 

where E~eg(Jq'). Thus, a feature of the Hilbertian model of pqs is that the 
set of Hilbertian questions may be reconstructed from the property lattice. 
This enables us to say that, in the Hilbertian pqs, the whole physical content 
of the theory is carried by the property lattice. 

4. PHYSICAL CONTENT OF A THEORY BASED ON PQS 

Quantum mechanics in Hilbert spaces (HQM), as formulated by yon 
Neumann (1955), for instance, is regarded by most physicists as the "right" 
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theory to describe quantum phenomena. One can say that HQM has been 
successful in fulfilling this task. The rather technical formalism of HQM, so 
far away from human experience, finds an acceptable justification in some 
foundational approaches to quantum mechanics, such as the JP and Aerts 
theories outlined in the previous section. Indeed, in both approaches, the 
property lattice La turns out to be isomorphic, because of Piron's Theorem 
3.2, to the lattice of closed subspaces of a generalized Hilbert space, thus 
recovering the formalism of HQM on the conceptual ground formalized by 
a pqs. For this reason HQM can be called a realization of Piron's theory. 

However, we stress that HQM is a partial realization of the whole 
formalism stemming from a pqs; indeed, HQM realizes only the derived 
structure ~ .  Nevertheless, we notice that, in most foundational works, 
physicists are concerned with the property lattice ~ ,  while completely 
neglecting the underlying pqs. This happens also when one needs to formalize 
physical concepts of fundamental importance, such as compatibility and 
composite entities. Piron himself, for instance, introduces the compatibility 
as a binary relation on the property lattice. The problem of the description 
of composite entities is viewed as a "lattice-theoretic problem" by Aerts and 
Daubechies (1978a,b, 1979), Aerts (1981b), and Nash and Joshi (1987a,b) 
[there are, however, valuable exceptions: let us just quote Aerts' theory of 
separated entities formulated at the level of the preparation-question struc- 
ture, rather than at the level of the property lattice (Aerts, 1981a, 1982)]. 

Now, this is a correct view for those who believe that the whole physical 
content of the theory is carried by the property lattice. Moreover, the fact 
that the "right" quantum physics, HQM, with all its limitations, is a realiza- 
tion of the property lattice seems to justify this view. Still, as stated in 
the final remark of the previous section, it is a matter of fact that, in the 
Hilbertian model of JP theory presented in Section 3.4, the entire pqs 
( S a ( ~ ) ,  #-(off) ; /, H, ~; T)  may be reconstructed from the lattice .W. 
Hence, there are several good reasons pointing to the idea that the only 
theoretical structure of physical interest is the property lattice 5r 

We think, however, that serious doubts can be raised against this view. 
The origin of these doubts lies within the results of some interesting theoreti- 
cal researches about composite entities. Indeed, it seems that some physical 
composite entities cannot be described by means of a Hilbertian model of a 
pqs. In Aerts (1981a, 1982), for instance, it is claimed that customary quan- 
tum mechanics based on Hilbert spaces cannot describe an entity consisting 
of two "separated entities." In particular, according to Aerts, axioms 4 and 
5 (or axioms P and A2 of JP theory) cannot hold in a pqs describing an 
entity consisting of two separated entities individually described by HQM. 
Therefore, for such an entity Piron's Theorem 3.2 does not apply, and so 
the main reason for considering Za the carrier of the whole physical content 
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of the theory fails. Moreover, Pulmannov~t (1985) and Raggio (1991) proved 
results analogous to Aerts' in the frameworks of quantum logics and W*- 
algebras, respectively. 

In order to explore whether the property lattice s carries the whole 
physical content of a theory based on pqs, we must clarify the meaning of 
physical content carried by a mathematical structure derived from a pqs. We 
give the following definition. 

Definition 4.1. Let d and t8 be two mathematical structures derived 
from the same pqs (Se, ~ ; L  7r,-; T)  describing an entity S. We say 
that d carries a larger physical content than t8 if there exists a canonical 
procedure to derive a mathematical structure cg from d such that ~ is 
isomorphic to cg. 

In other words, the physical content carried by d is greater than that 
carried by & if it is possible to recover ~ from d .  

4.1. Testable Properties 

Given a pqs (6e, 2 ; / ,  Jr, - ;  T),  we introduce a new quasiorder relation 
-< on ~ as follows: 

a-<fl iff Zr (a )~Zr ( f l )  and ZF(fl)~ZF(a) (QO2) 

This relation is stronger than the quasiorder relation < defined by (QO1) 
in Section 3; indeed 

a~(fl implies a <fl (SI) 

while, in general, the converse is not true. We may interpret the mathematical 
statement (S 1) as saying that a ~(fl provides more detailed physical informa- 
tion than a </3. Now, the same procedure used in Section 3 to single out 
the structure ~ through the quasiorder relation < may be used to single 
out a new structure L through the new quasiorder relation ~(. Hence, we 
define the following equivalence relation on .~: 

a - /3 iff a ~ /3 and/3~(a 

iff ~r(a)=SPr( f l )  and ~ e ( a ) = ~ F ( f l )  

iff Zr(a)=Zr( f l )  and ZF(a)----ZF(fl) (EQ2) 

Of course we have 

a = fl implies a ,~ fl (S2) 

Let (SP, 2 ; / ,  7r, - ;  T)  be a pqs. A testable property is Definition 4.2. 
any equivalence class e= [a]=_~.~/=_. The set of all testable properties is 
denoted by L. 
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it follows from ($2) that a single property a = {a, fl . . . .  } eA a contains, 
in general, several testable properties e=[a]~_, f=[f l ]  . . . . . .  However, 
definition (EQ2) allows us to define, for every eeL, two subsets of Z as 
follows: 

Xr(e) = XT(a) and XF(e) = Xr(a), a e e  

No[e that L is a partially ordered set (poset) with respect to the relation 

e<__f iff a~(fl, Vaee and f ief (02) 

The poset L has the minimum element 0= [0]= ___0 and the maximum 1 = 
[I]~ = ~. In general, L is not a lattice with respect to -<. However, the 
inversion ~ and the product 7r of .~ respectively induce the following map- 
pings on L: 

v" L~-+L, e = [a]__- ~-+e v = [ a - ] ~ _  

[l: ~(L)~-~L, (ej)j~-+l)(ej)j~=[,rjaj]_~, where ajeej 

To simplify the notation, we write ele2 instead of l-l(ej, e2). 
We introduce two structures L(Z, .r and L(Z, # )  which play, with 

respect to L, a rote similar to that played by s .~) and s # )  with 
respect to s 

L(X, .~). We define the family L(Z, .~)___#2(X) as 

L(Z, .~) = {(A, B), A, Bc_Xl3eeL such that .4 =Xr(e) and B=Y.~(e)} 

A partial ordering relation (.41, Bj) < (A2, B2) iff Ai -~`42 and B2~_BI is 
defined on L(Z, .~). 

Proposition 4.1. The mapping 

ext2: L~-+L(Z,.~), e~-+ext2(e)=(Xr(e), Xv(e)) 

turns out to be an isomorphism between the posets L and L(Z, .~), i.e., ext2 
is a bijection such that: 

(i) ext2(0) = ( ~ ,  Z) and ext2(1) = (Y-, ~ ) .  
(ii) ext2(e)'< ext2(f) iff e < f  

L(Z, # ) .  Define the family L(Z, # )  by 

L(Y., # ) =  {(`4, B)eAg2(Z, #)IA(#)B} 
L(Z, # )  is endowed with the same partial order relation <_ defined on 
L(X, .r Now, the structure (L(Z, # ) ,  <__ ) turns out to be a complete lattice, 
where for every family {(Aj, By)} eL(E, # ) ,  we have: 

(i) A j(4,, Bj)=(Aj4,, VjBj). 
(ii) Vj (.4j, B j ) = ( V j 4 ,  AjBj). 
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(docl) 
(doc2) 
(re) 
(wocl) 
(woc2) 
(woc3) 
(in) 

(iii) AcA,n)~L~z,#) (A, B ) = ( O ,  Z) and VtA,B)~LCz,#) (A, B)=(Y~, ~) 
[A and V on the r.h.s, denote the g.l.b, and the l.u.b, of M(Z, ~), 
respectively]. 

Furthermore, the two mappings 

- "  L(Y~, # )  ~ L(Y., # ) ,  - (A,  8) = (B, A) 

~: L ( Z , # ) ~ L ( Y . , # ) ,  ~(A, B) = (B, A #) 

are defined on L(Z, # ) .  Such mappings satisfy the following properties: 

-[-(A, 8)1 = (A, B) 
(A, B) -< (C, D) implies -(C, D) ___ -(A, B) 
(A, B) "<-(A, B) and (C, D) -<-(C, D) imply (A, B) ~ (C, D) 
(A, 8) ~ ~[~(A, B)] 
(A, B) ___ (C, D) implies ~(C,D) -< ~(A, B) 
(A, B) ^ ~(A, B ) = ( ~ ,  Z) 
-[~(A,8)] = ~[~(A, B)] 

Therefore, according to Cattaneo and Nistic6 (1989a), the structure 
(L(Z, :~), ( ~ ,  Z), ~ ,  - ,  ~ )  is a BZ-lattice with ha/f element (~ ,  0 ) -  

So, we have derived the structure (L, ~ , 0 ,  v, fl) from a pqs 
(6:, ~; L re, - ;  T).  One may now ask the following question: 

Is the physical content carried by L larger than the one carried by s 

Physical intuition and statements (S1), ($2) suggest an affirmative answer. 
However, it is possible to recover the lattice ~ from the structure 
(L, <__, 0, v, f~), as the following proposition indicates (its proof is 
straightforward). 

Proposition 4.2. Let (5 ~, .~;/, 7r, -;  T )  be a pqs. The following binary 
relation on the poset L 

e <L f iff e ~ ef 

is a quasiorder relation, which induces in L the equivalence relation 

e ~ L f  iff e -<ef  and f ~ ( e f  

Therefore, the quotient set ~ ( L ) : =  L/=~ is partially ordered by the relation 
< L defined by 

11<L l2 iff eel, and fEl2 imply e < L f  

As a consequence, the following statements hold: 

(i) For every e, feL,  a, fle.~, e < L f i f f  see  and f i e f  imply a<fl. 
(ii) Let e, f, a, and fl be as in (i); then e ~ L f  iff see  and f l~f  

imply a ~fl.  
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(iii) For  every IELZ~(L), Ue~teeLP. 
(iv) For  every a e A  a, ~. (a):= {eeLle~_a} e.LP(L). 
(v) For every a, b e ~ ,  a<b iff 2. (a) <L ~. (b). 

(vi) The poset (5e(L), -<L) is a complete lattice. 
(vii) The mapping s a~--~s is an iso- 

morphism between the complete lattices (A a, < )  and (Aa(L), <i.). 

Therefore, given the structure (L, ~ ,  0, v, f~) induced from a pqs 
(5:,  .~;/, to, ~; T) ,  it is always possible to single out a lattice s which 
is isomorphic to the property lattice ~ .  We schematize this procedure as 
follows: 

(L, _ ,  0, v, a ) - .  (Le(L), --- L) '--, (Y', -<) (L--,  ~ )  

Then, if we can get some information from the mathematical structure 
(L#, <) ,  we can get the same information from the structure (L, <__, 0, v, ll).  
In such a sense, according to Definition 4.1, we state that the physical content 
carried by the structure L is larger than the one carried by the property 
lattice ~ .  

When we describe an entity by taking into account only the property 
lattice A a, a certain amount of information on the entity contained in L can 
be lost. Such a loss of information does not occur if there exists a canonical 
procedure (Se ~ L )  to deduce (L, _ ,  0, v, f~) from the property lattice 
(A ~ < )  ; in such a case we can affirm that L and L,e carry the same physical 
content. The following simple example shows that this procedure cannot be 
given for every pqs. 

Example 4.1. Let 6ej = {xl, yj ,  zl } be the set of  preparation procedures 
for an entity S~. Let .~ be the set of  its questions and f#~ = {aj,/31, ~'t} ----~ 
be a set of (primitive) questions such that: 

(i) 5at(a,) = {xl, Yl }, ,STF(al) = ~ .  
( i i )  ~ r ( f l O  = {X~, z~}, ~p(f l i )  = ~ .  

(iii) ~ r (  7 0 = {Yl , zj } , ~ F( 7 0 = f~. 

Furthermore, suppose that every a e-~ is of the form 

a=rrja 0), where a~162 o r  (a~ 
Then the set of  states is E~={p'~=p(xO, p~=p(yO,p~=p(zO}. The set 
s .~), isomorphic to the property lattice Se~=.~/=, is the Boolean 
lattice La(E~, .~) = ~(E~), which consists of  eight different elements. The set 
L(E~, .~), isomorphic to L~ =.~/__- (Proposition 4.1) and since, for every 
a~.~m, Y.r(a) = ~  or Y~v(a) = ~ ,  is given by 

L(E,, .~,)= { (~ ,  A)IA ~ La(X,,-~,)} ~ {(A, ~)IA ~s .~,)} 
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It therefore consists of  15 different elements. 
We now consider another entity $2. Let S~2 = {x2,  Y2, Z2} be the set of  

preparation procedures of  $2 and let .~2 be the set of  its questions. Suppose 
that if2 = {a2, f12, y2, 62} ~--~2 is a set of  primitive questions such that: 

(i) 5at(a2) = {x2, y2), 5aF(a2) = ~ .  
(ii) 5er(fl2) = {x2, z2), 5av(fl2) = ~ .  

(iii) 5ar(~,2) -- {Y2, z2}, 5Pr(y2) -- ~ .  
(iv) 5er(82) = {x2}, 5as(a2) = {y2}. 

As in the previous case, we assume that every a e-~2 is of  the form 

a=~rja (j), wherea(J)eff2w{O,I} or (aCJ))~eff2w{O,I} 

The set Z2 of  the states is Z2={p~=p(x2),p{=p(y2),pg=p(zz)}. Since 
~2~a2" f12, we have no further properties with respect to Sj.  Then 
~(X2,  -~2)= ~(Z2) has eight elements, too. Let p be the mapping 

p:  E, ~-~Z2, i.t(p~)=p~, p(p~)=p~, p(p~)=p~ 

The canonical extension of  p to a mapping p : ~ ( E I ,  -~l) ~ ~(Z2,  -~2) turns 
out to be an isomorphism between the two complete lattices ~(E~,  .~1) and 
~e(E2, -~2). We may therefore affirm that the property lattices ~ and 5e2 
of  the two respective entities S~ and $2 are isomorphic. 

On the other hand, ext2([~2] ~) = ({p~}, {p~} ), and the set L(Y.2, -~2), 
isomorphic to L2 = ~2/=-, is given by 

L(Z2, -~2) = { ( ~ ,  A)IA ~ ~ (Z2 ,  -~2) } 

{(A, ~) lAeSe(Z2,  .~2)} w {({p~}, {p~)),  ({pY}, {p~})} 

One sees that it consists of  17 different elements, whereas L(E~, .~) has 
only 15. 

We thus conclude that, although S~ and $2 have isomorphic property 
lattices s and s their posets of  testable properties L~ and L2 cannot be 
isomorphic. This fact is to be interpreted as the impossibility of  deriving, in 
general, the set L of testable properties from the lattice ~ of  properties. 

4.2. The BZ Lattice of  Testable Properties 

In the previous subsection we have shown that, in a pqs without specific 
peculiar axioms, the property lattice s does not carry the whole physical 
content of  the theory. On the other hand, if we assume Piron's axioms C, 
P, and A or Aerts' axioms 1-5, the resulting theory is not general enough 
to describe entities which cannot be described by customary quantum mech- 
anics. We then seek for a specific peculiar axiom which allows us to identify 
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the physical content of L# with that of L, but is weaker than the specific 
peculiar axioms of Piron's and Aerts' theories. 

A pqs ( ~ ,  .~;/, tr,~; T)  is said to be complete if the following axiom 
holds. 

Completeness Axiom. Let ( ~ ,  .~;/, z, ~; T)  be a pqs describing an 
entity S, For every property a e LP there exists a (primitive) question v(a)ea 
such that Zr(v(a)) = Zr(v(a)) # and ZF(v(a)) = Zr(v(a)) #. 

Example 4.2. The Hilbertian model of a pqs presented in Section 3.4 
represents a complete pqs. Indeed, for every Hilbertian question a e ~ ( ~ ) ,  
the primitive question v([a] ~.) is the orthogonal projection E~({ 1} )eo~(~).  

In this subsection we show that for a complete pqs there exists a canon- 
ical procedure ( Z a ~ L )  which recovers the poset L from the property 
lattice L#. 

A trix, ial consequence of the completeness is that, for any question a, 
the set of states Zr(a) ,  which is equal to Y.p(a) #, is a d-closed subset of Z, 
i.e., if(Z, .~)___L#(Z, 4t), as stated in the following proposition. 

Proposition 4.3. Let (6 a, .~;/, z, -;  T)  be a pqs. If the completeness 
axiom holds, then for every a e ~ ,  for every a e ~ ,  and for every eeL: 

(i) Zr(a) ,  Zv(a), Zr(a), Zr(e), Zv(e)e&a(Z, :~e), i.e., 

' _~ (x ,  .~) ~ ~(~;, #)  

(ii) Er(a)(CC)ZF(a) and Zr(e)(4C)Zv(a), i.e., L(Z, .~)_L(E, ~ ) .  

The following Propositions 4.4 and 4.5 and Theorem 4.1 show that in a 
complete pqs the equalities ~(Z,  .~) = ~(E,  4r and L(Z, .~) = L(Z, -/r hold. 

Proposition 4.4. Let (5:, .~;/, z, ~; T)  be a complete pqs. Then, the 
following statements hold. 

(i) For every question a e.~, ZF(a)___Zv(v([a].~)). 
(ii) For every state peZ, Zr (v(p) )=  {p}#. 

Proof (i) For every qeZr(a)  we have q4Cp for peEr(a); then 

Zr(a)  ~ Er(a)  # = Er(v([a])) # = EF(v([a] ~)) 

(ii) Let us denote by ~r the set of all questions a such that Z r ( a ) =  
ZT(v(p)), and by & the set of the questions fl such that peZr(fl). Then we 
have: 

(a) ZF(v(p)) = U.~, Z~-(a). 
(b) {p}#= U t ~  zr(fl). 
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Now, for every f l ~ ,  we have Zr(fl)~Zr(v(p)). Indeed, fle~ iffpeXr(fl). 
On the other hand, 

N 

so that for any pc&, Zr(v(p))~Zr(p)=Zr(V(p)); this implies 
ZF(p)_Zr(v([fl] ~.)) ~_Zr(v(p)) [since Zr(V([p]=))#~_ZT(V(p))#]. 

Therefore, 

{p}#= U 

On the other hand, for every a ca/ ,  

N 
p~Zr(#) 

which implies PeZr(a), i.e., a e ~ ,  and so 

U Zr(a)--Ze(v(p))c_ U Ze(a) U Zv(a)={P} # 
a e d  a E..cg a e . ~ \ . ~ l  

Thus gF(V(p))={p}#. �9 

Proposition 4.5. If the completeness axiom holds, then the following 
statements hold. 

(i) For everypeZ, 

Zr(v(p)) #= {p}## 

(ii) For every A _Z, there exists a question a such that 

Zr (a )  = A ##  and Z~-(a) = A # 

(iii) For every a E ~ ,  Zr(a)Es ~ )  and the mapping 

ext,: M~-+~(Z, # ) ,  a~-+ext,(a)=Zr(a) 

is an isomorphism between the two complete lattices ~ and ~'(Z, gt-). 

Proof. (i) This is a trivial consequence of Proposition 4.400. 
(ii) We consider the question fl = zrp~,# v(p)~; we have 

r.r(/D = N #  Y.r(v(p)) p~# {p}#=-4 ##  [Proposition 4.4(ii)1 

We now define the question a =  v(fl); then Zr(a)=Zr(V(fl))=A ## 
and Zr(a)  = Y-r( v([fl] ~)) = A #. 

(iii) This follows from M(Z, .~)= ~(Z,  ~ ) .  �9 
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Zr(a)  =A 

Then we form the question 

An immediate, but important, consequence of Proposition 4.5(iii) is that 
the orthocomplementation A ~ A  # (Proposition 3.3) of ~r # )  induces an 
orthocomplementation ' on the property lattice, ~ ,  given by 

': ~ ,  a~a'=exffl(exh[a] #) 

Finally, we state the equality L(Z, .~)= L(Z, # ) ,  which implies the iso- 
morphism L ~--> L(Z, ~).  

Theorem 4.1. Let ( ~ ,  .~; I, z, -;  T)  be a pqs and assume that the com- 
pleteness axiom holds. Then, for every pair (A, B) of d-closed subsets of Z, 
i.e., A, Be ~(Z ,  # ) ,  with A(-~)B, there exists a question y such that Zr(7)  = 
A and Zr(7) =B, i.e., L(Z, .~)=L(Z, # ) .  Therefore, L(Z, .~) is a complete 
BZ-lattice, too. 

Proof For every pair (A, B)es ~),  with A(-~)B, and in view of 
Propositions 4.3-4.5, there exist two primitive questions a and/3 such that 

and Zr(/3) = B 

We have 

z T ( r )  = ZT( a ) • z ~ ( ~ )  

= A r~ B # (by Definition 3.2) 

=A (since A _ B  #) 

On the other hand, 

z ~ ( y )  = Z~(a) n r~r(p) 

=A # n B (by Definition 3.2) 

= B  (since B~_A #) �9 

Theorem 4.1 states that, as a consequence of the equality L(Z, 2 ) =  
L(Z, # ) ,  the mapping 

ext2: L~--~L(Z, -7~), ext2(e) = (Zr(e), Y~r(e)) 

is an isomorphism between complete BZ-lattices. Now, from the definition of 
L(Z, # ) ,  we see that it is completely determined by the orthocomplemented 
complete lattice s # ) .  Since the latter is isomorphic to the property 
lattice s and the former is isomorphic to the BZ-lattice L of testable prop- 
erties, we can assert that L is completely determined by s Indeed, if 
(5:, .~;/, z, ~; T)  is a complete pqs and ~a is the corresponding property 
lattice, we define 

L(Se) = {(a, b)e~2la<b '} 
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and the partial order relation (a, b ) ~  (c, d) iff a<c and d<b with respect 
to which L ( ~ )  is a complete BZ-lattice isomorphic to L, the isomorphism 
being given by the mapping 

L(.Le)~-~L, (a, b)~--~e~L such that extffe) = (exh(a),  exh(b)) 

Hence, for every complete pqs there exists a canonical procedure 

to recover the BZ-lattice of  testable properties L from the property lattice 
Ga. Thus, we may assert that in a complete pqs, the physical content carried 
by the property lattice ~.~ coincides with the physical content carried by the 
BZ-lattiee o f  testable properties L. 

4.3. Separated Entities 

In the preceding subsection, we have seen that, for a complete pqs, the 
physical content carried by the BZ-lattice L is identical to the one carried 
by the property lattice La of  JP theory. In this subsection we use Aerts' 
(1981a, 1982) theory of  separated entities to prove that, if two separated 
entities are individually described by complete pqs, then the entity consisting 
of  the two entities cannot be described, in general, by a complete pqs. 

Note. In the sequel, axiom 1 of Aerts' theory (Section 3.3) will be simply 
referred to as axiom 1. 

Our argument needs the following further notions about pqs. 
(a) Performable-together questions. Let us quote Aerts (1982): 

We shall say that we can perform both questions a and fl together iff 
there exists an experiment E(a, fl) having four outcomes that we shall 
label by {yes, yes}, {yes, no}, {no, yes}, and {no, no}, and such that 

a is true iffwe are certain to get one of the outcomes {yes, yes} or {yes, no} 
for the experiment E. 

a~ is true iff we are certain to get one of the outcomes {no, yes} or {no, no} 
for E. 

fl is true iffwe are certain to get one of the outcomes {yes, yes} or {no, yes} 
for E. 

fl- is true iffwe are certain to get one of the outcomes {yes, no} or {no, no} 
for E. 

If  a and fl are performable-together questions, the question a Afl  (resp., 
a Vfl,  aOfl )  consists in performing E(a, fl) and attributing the outcome 
"y"  to a A f l  (resp., aVf l ,  a e f l )  if the outcome (y ,y)  (resp., [ (y ,y )  or 
(y, n) or (n, y)], [(y, y) or (n, n)]) is obtained for E(a, fl); in the other cases 
we attribute the outcome "n" to a A fl (resp., a V fl, ct @fl). 

(b) Separated questions and entities: "We shall say that two questions 
a and fl of  an entity S that can be performed together are separated iff, 



1894 Cattaneo and Nistic~ 

when for an arbitrary state of the entity there is a certain chance to obtain 
one answer for a and another one for fl, then there is for this state of the 
entity a certain chance to obtain this combination for E(a, fl) . . . .  If we 
have an entity S consisting of two entities S~ and $2, then S~ and $2 are said 
to be separated iff every question of S~ is separated from every question of 
$2" (Aerts, 1982). 

As proved by Aerts (1982), if a and fl are two performable-together 
questions, then: 

(i) Er(a A f t ) = Z r ( a ) n  Er(fl); from which we have that 

a A f tea  A b 

where one denotes by a and b the corresponding properties. 
(ii) Yw(a) u Zr(ft)c_~,r(a Vft) and the property c generated by a XTfl 

is an upper bound of the set of property {a, b}. 

Furthermore, if a and fl are separated, then: 

(iii) Er(a V f l ) = Z r ( a )  u Er(ft), from which it follows that 

a V f l e a v  b 

A formalization of the notion of performable-together questions [item 
(a) above] may be found in Cattaneo and Nistic6 (1989b), in which the 
following propositions are proved. 

Proposition 4.6. Let a and fl be two questions performable together, 
and let us denote the set 

{ a ,  ft, a~,  ft ~, a A ft, a V ft, a e ft } 

by ~f~(a, ft). If Y~, y2eAe(a, ft), then Y~ and 72 are performable together. 
Furthermore, a true implies a V ft true. 

Proposition 4. 7. If axiom 1 holds and a and fl are performable-together 
primitive questions, then also a Aft, a Vfl, and a@ft are primitive ques- 
tions. Furthermore, (i) a - A f t -  true implies (a \7 ft)- true, (ii) a ~ true implies 
(a Aft)-  true. 

Let us now consider two separated entities S~ and $2, with sets of 
questions .~ and -~2, respectively. According to Aerts' theory, the set .~ of 
the questions of entity S constituted by the separated entities S~ and $2 
consists of questions a of the form 

a = a ,  " a2"  Iria~ Aai2  �9 z j a ~ V a J 2  �9 z k a k O a k 2  (1) 

where the questions indexed by 1 (resp. 2) pertain to Sj (resp. $2). 
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We can now present our counterexample. Suppose that we have to 
describe two separated entities St and $2 such that entity Sk  (k = 1, 2) has 
two primitive, nontrivial questions ak and fig, which can be performed 
together. Furthermore, suppose that there exist four different states for Sk, 
q~k), q(k), q(ak), and q(4 k), such that questions akAflk, akAfl'k, a'kAflk, and 
a~" A fl~" are true, respectively. This is all that is known about  Sk, and thus 
we have to construct the theory for Sk only on the basis of  this information. 

Remark 3. Such entities are quite usual in physics. For  instance, we 
may think of  Sk as an electron with only two energy levels Et and E2 and 
for which the only questions available are ak and ilk, with ak being "the 
spin of  Sk along the z axis is equal to 1/2~i," and ,ok being "Sk has energy 
equal to E2." 

Let us now build up the question sets of  Sk. In accordance with Aerts 
(1982), we can set 

-~k = { zr,a(k0l { a(k 0} ~ fgk}, k = 1, 2 (2) 

where fgk is the set of  the primitive questions of-~k, i.e., 

fr ,Ok) = {0,  akA  ,ok, akA #'; , a ;  A ,ok, a'; A ,O'; , ak, ,ok, 

a~O,ok, (akOPk)- ,  

p ;  , a ;  , ak V ,o~ , ( a'; ZX ,O~y, ( a~ A ,O~;) ~, ( a~ ZX ,Ok)-, I } 

We stress that, by construction, both -~1 and -~2 satisfy the completeness 
axiom and axiom 1. 

Theorem 19 in Aerts (1982) implies that in the state p t = q(21) ̂  q(z 2), the 
question (at A f lT)A(a2Af l '~)  is true. Analogously, there exist four states, 
denoted by P2, P3 , /4 ,  and Ps, such that the four questions 

and 

(at AB?~) A (a~Ap~)  

(a~ A fl,) A (a2A fl'~) 

(a~ A f l l ) A ( a ~  Afl2) 

(a~ A f l ~ ) A ( a 2 A f l ~ )  

are true, respectively. It follows that 

{P,,  P2, P3} # {P4, ps} (3) 

Our goal is to show that .~ is not complete. We proceed by contradiction. 
If  .~ were complete, there should exist a primitive question a E-~, i.e., of  the 
form (1), such that the following statements hold. 
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(I) In each state p~, p2, or P3 the question a is true. 
(II) In each state p~ or p5 the question a ~ is true. 

If a had the form (1), then Theorem 22 of Aerts (1982) would apply, 
so that a must have one of the forms ~ ,  ~2, ~/~62, t~762,  or &@6~, 
where 6~ and 62 are primitive questions of .~ and -~2, respectively, i.e., 
~ eff~ and 6~ec~2. But statements (I) and (II) do not hold for any of these 
five questions, as we are going to show. In Cattaneo and Nistic6 (1989b) we 
proved the following propositions. 

Proposition 4.8. Let 6kef#k(ak, ilk) and let p be a state. Then either 

p~ Y~r( ak) ~ ZT(flk) 
implies pc~,r(~k) or 

(II) above imply 

p3~Y~r(3,)~ or ~p3~ZF(6,) 
pseZF( S1) ) tps~Zr(t~l). 

(4) 

Now, we have also p2, p4E~T(t;t~) n ~T(fl2), and this implies p2, P4ff~r(~2) 
or P2,P46EF(t~2). Then, from Propositions 4.8 and 4.9, it follows that 

either ~P2~Y'r(31)I or 
(p4eEF(Sl)) 

From (4) and Proposition 4.8, since 

pl EZT(al) ~ ZT(fl?) 
and 

p3~ZT(aY) c~ Zr(fl0 
it follows that 

either 

or 

{ P2~EF(fi~)I (5) 
p46Y"T(~I)J 

{ qeY~r(al) C~ Er(fl~') implies q~Er(t~l) l 
qeEr(aT) n Er(fl,) implies q~Y~r(~l)) 

{ q~Zr(a,) c~ Zr(fl~') implies q~Z~(6,)l 

q~Xr(a?) c~ Zr(fl0 implies q~EF(t~l)J 

(6) 

implies p e ZF (3k). 

Proposition 4.9. If axiom 1 holds, ~k~gk(ak, fig) iff there exists 
t~f~k(ak',  ilk) such that Er(tSk)=Zr(3~) and, therefore, ~,F((~k)=~aF((~rk). 

By using these results, in Cattaneo and Nistic6 (1990) we proved that 
if 61 eff l(al ,  ill) and t~2e~2(a2, f12), then a ff~(~l, s and statements (I)- 
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On the other hand, from the fact that p2E~,r(Ctl) nY~r(fl'~) and P4~ 
Er(a?)  c~ Er(fll), and (5) we get 

either 

or  

{ q e E r ( a l )  n Er(fl•) implies q~Er(61)l 

q e Z r ( a ? )  c~ ~~T(j~I) implies q~ZF(6])J 

{ qr  c~ ET(fl? ) implies qeE~-(~l) 
/ 

q~Zr(aV) n Zr(f l l )  implies q ~ E r ( ~ ) )  

(7) 

We see that (6) and (7) form a contradiction. Even though the completeness 
axiom holds for both -~l and -~2, the same axiom cannot hold for .~. Indeed, 
we have that pl, p2, P3 are preclusive to p4, ps, but no question a exists 
in .~ such that p], p2, p3~Er(ot)  and p4,p56]~F(a); then the pqs 
(6e, .~;/, 7r, ~; T> which, according to Aerts, describes two separated enti- 
ties as a unique entity, in general is not complete. 

Remark 4. In Cattaneo and Nistic6 (1990) doubts are raised about the 
empirical adequateness of Aerts' theory of separated entities. This does not 
entail our argument, because Aerts' theory is perfectly self-consistent. 
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